43 research outputs found

    Iterative PET Image Reconstruction using Adaptive Adjustment of Subset Size and Random Subset Sampling

    Get PDF
    Statistical PET image reconstruction methods are often accelerated by the use of a subset of available projections at each iteration. It is known that many subset algorithms, such as ordered subset expectation maximisation, will not converge to a single solution but to a limit cycle. Reconstruction methods exist to relax the update step sizes of subset algorithms to obtain convergence, however, this introduces additional parameters that may result in extended reconstruction times. Another approach is to gradually decrease the number of subsets to reduce the effect of the limit cycle at later iterations, but the optimal iteration numbers for these reductions may be data dependent. We propose an automatic method to increase subset sizes so a reconstruction can take advantage of the acceleration provided by small subset sizes during early iterations, while at later iterations reducing the effects of the limit cycle behaviour providing estimates closer to the maximum a posteriori solution. At each iteration, two image updates are computed from a common estimate using two disjoint subsets. The divergence of the two update vectors is measured and, if too great, subset sizes are increased in future iterations. We show results for both sinogram and list mode data using various subset selection methodologies

    Maximum-likelihood estimation of emission and attenuation images in 3D PET from multiple energy window measurements

    Get PDF
    This study explores the feasibility of incorporating energy information into a maximum-likelihood reconstruction of activity and attenuation (MLAA) framework. The attenuation and activity distributions were reconstructed from multiple energy window data, and a scatter function was added to the system model of the algorithm. The proposed energy-based method (MLAA-EB) was evaluated with simulated 3D phantom data, using the geometry and characteristics of a Siemens mMR PET-MR scanner. Results showed that the proposed algorithm is able to compensate for errors in the activity image caused by the incorrect assignment of attenuation values to the segmented MR. This is effective for small objects only, for large objects further solutions need to be found

    A Demonstration of STIR-GATE-Connection

    Get PDF
    We present the first open-source version of STIR-GATE-Connection, a project that aims to provide an easy-to-use pipeline to simulate realistic PET data using GATE, followed by quantitative reconstruction using STIR. Monte Carlo simulations and image reconstruction are powerful research tools for emission tomography that can assist with the design of new medical imaging devices as well as the evaluation of novel image reconstruction algorithms and various correction techniques. STIR-GATE-Connection is a collection of scripts that aid with the: (i) setup of a realistic GATE simulation of a voxelised phantom using a user selected scanner configuration, (ii) conversion of the output list mode data into STIR compatible sinograms, and (iii) computation of additive and multiplicative data corrections for Poisson image reconstruction using STIR. In this work, we demonstrate example usage of these steps. A public release of STIR-GATE-Connection, licensed under the Apache 2.0 License, can be downloaded at: http://www.github.com/UCL/STIR-GATE-Connection

    Detection Efficiency Modelling and Joint Activity and Attenuation Reconstruction in non-TOF 3D PET from Multiple-Energy Window Data

    Get PDF
    Emission-based attenuation correction (AC) meth-ods offer the possibility of overcoming quantification errors induced by conventional MR-based approaches in PET/MR imaging. However, the joint problem of determining AC and the activity of interest is strongly ill-posed in non-TOF PET. This can be improved by exploiting the extra information arising from low energy window photons, but the feasibility of this approach has only been studied with relatively simplistic analytic simulations so far. This manuscript aims to address some of the remaining challenges needed to handle realistic measurements; in particular, the detection efficiency (“normalisation”) estimation for each energy window is investigated. An energy-dependent detection efficiency model is proposed, accounting for the presence of unscattered events in the lower energy window due to detector scatter. Geometric calibration factors are estimated prior to the reconstruction for both scattered and unscattered events. Different reconstruction methods are also compared. Results show that geometric factors differ markedly between the energy windows and that our analytical model correspond in good approximation to Monte Carlo simulation; the multiple energy window reconstruction appears sensitive to input/model mismatch. Our method applies to Monte Carlo generated data but can be extended to measured data. This study is restricted to single scatter events

    PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques

    Get PDF
    Positron emission tomography/magnetic resonance imaging (PET/MRI) potentially offers several advantages over positron emission tomography/computed tomography (PET/CT), for example, no CT radiation dose and soft tissue images from MR acquired at the same time as the PET. However, obtaining accurate linear attenuation correction (LAC) factors for the lung remains difficult in PET/MRI. LACs depend on electron density and in the lung, these vary significantly both within an individual and from person to person. Current commercial practice is to use a single-valued population-based lung LAC, and better estimation is needed to improve quantification. Given the under-appreciation of lung attenuation estimation as an issue, the inaccuracy of PET quantification due to the use of single-valued lung LACs, the unique challenges of lung estimation, and the emerging status of PET/MRI scanners in lung disease, a review is timely. This paper highlights past and present methods, categorizing them into segmentation, atlas/mapping, and emission-based schemes. Potential strategies for future developments are also presented

    Joint Activity and Attenuation Reconstruction from Multiple Energy Window Data with Photopeak Scatter Re-Estimation in non-TOF 3D PET

    Get PDF
    Estimation of attenuation from PET data only is of interest for PET-MR and systems where CT is not available or recommended. However, when using data from a single energy window, emission-based non-TOF PET AC methods suffer from ‘cross-talk’ artefacts. Based on earlier work, this manuscript explores the hypothesis that cross-talk can be reduced by using more than one energy window. We propose an algorithm for the simultaneous estimation of both activity and attenuation images as well as the scatter component of the measured data from a PET acquisition, using multiple energy windows. The model for the measurements is 3D and accounts for the finite energy resolution of PET detectors; it is restricted to single scatter. The proposed MLAA-EB-S algorithm is compared with simultaneous estimation from a single energy window (MLAA-S). The evaluation is based on simulations using the characteristics of the Siemens mMR scanner. Phantoms of different complexity were investigated. In particular, a 3D XCAT torso phantom was used to assess the inpainting of attenuation values within the lung region. Results show that the cross-talk present in non-TOF MLAA reconstructions is significantly reduced when using multiple energy windows and indicate that the proposed approach warrants further investigation

    Potential benefits of incorporating energy information when estimating attenuation from PET data

    Get PDF
    This study explores the advantages of using a different energy window for each individual annihilation photon when estimating attenuation from scattered PET data. Several studies have shown that scattered data can be used to reconstruct the density distribution of the object, although they are limited to simple phantoms and ideal energy measurements. We have incorporated a realistic photon detection probability model into our algorithm, as well as the dependence of attenuation on photon energy. In the proposed method each detector can assign a photon to either energy window. Preliminary results on point source simulations have shown that using a different window for each annihilation photon allows to derive spatial information on both attenuation and activity distribution, and to isolate subsets of scatter angles depending on the energy window pair used. XCAT simulations demonstrated that it is possible to yield an attenuation map from scattered PET data only and that MR information can increase reconstruction accuracy. This method can also compensate for errors typically introduced from the MRAC, such as truncation artifacts

    Neuro-immune signatures in chronic low back pain subtypes

    Get PDF
    We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine, and Gulf War Illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18 kDa translocator protein, which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple etiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct “neuroinflammatory signatures”. To further explore this hypothesis, we tested whether neuroinflammatory signal can characterize putative etiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. “radicular” vs. “axial” back pain). Fifty-four chronic low back pain patients, twenty-six with axial back pain (43.7 ± 16.6 y.o. [mean±SD]) and twenty-eight with radicular back pain (48.3 ± 13.2 y.o.), underwent PET/MRI with [11C]PBR28, a second-generation radioligand for the 18 kDa translocator protein. [11C]PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the [11C]PBR28 data 1) to functionally localize the primary somatosensory cortex back and leg subregions and 2) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of “fibromyalgianess” (i.e. the degree of pain centralization, or “nociplastic pain”). Furthermore, statistical mediation models were employed to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, [11C]PBR28 PET signal and functional connectivity to the thalamus were: 1) higher in radicular compared to axial back pain patients, 2) positively correlated with each other and 3) positively correlated with fibromyalgianess scores, across groups. Finally, 4) fibromyalgianess mediated the association between [11C]PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of “neuroinflammatory signatures” that are accompanied by neurophysiological changes, and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about inter-individual variability in neuro-immune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches

    Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset

    Get PDF
    The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 ‘Pre-Pandemic’, 28 ‘Pandemic’) using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 (‘Pre-Pandemic’ cLBP) or between August 2020 and May 2022 (‘Pandemic’ cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r’s ≄ 0.35; P’s < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = −0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself
    corecore